Integrating cybernetic modeling with pathway analysis provides a dynamic, systems-level description of metabolic control.

نویسندگان

  • Jamey D Young
  • Kristene L Henne
  • John A Morgan
  • Allan E Konopka
  • Doraiswami Ramkrishna
چکیده

Cybernetic modeling strives to uncover the inbuilt regulatory programs of biological systems and leverage them toward computational prediction of metabolic dynamics. Because of its focus on incorporating the global aims of metabolism, cybernetic modeling provides a systems-oriented approach for describing regulatory inputs and inferring the impact of regulation within biochemical networks. Combining cybernetic control laws with concepts from metabolic pathway analysis has culminated in a systematic strategy for constructing cybernetic models, which was previously lacking. The newly devised framework relies upon the simultaneous application of local controls that maximize the net flux through each elementary flux mode and global controls that modulate the activities of these modes to optimize the overall nutritional state of the cell. The modeling concepts are illustrated using a simple linear pathway and a larger network representing anaerobic E. coli central metabolism. The E. coli model successfully describes the metabolic shift that occurs upon deleting the pta-ackA operon that is responsible for fermentative acetate production. The model also furnishes predictions that are consistent with experimental results obtained from additional knockout strains as well as strains expressing heterologous genes. Because of the stabilizing influence of the included control variables, the resulting cybernetic models are more robust and reliable than their predecessors in simulating the network response to imposed genetic and environmental perturbations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Cybernetic Approach: Optimal Control for Predicting Regulatory Metabolism Actions

In this work, a dynamic cybernetic modeling framework is introduced for in silico experimentation in the absence of partial kinetic information. In this method, cybernetic principles are employed, assuming that the biological system is evolved such that it optimizes a metabolic objective function. Based on this objective function, the missing dynamic information is evaluated through a dynamic o...

متن کامل

Dynamic Harmonic Modeling and Analysis of VSC-HVDC Systems

Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs a Dynamic Harmonic Domain (DHD) based framework for dynamic harmonic analysis of VSC-HVDC systems. These systems are wide...

متن کامل

Marketing Strategy Evaluation by Integrating Dynamic Systems Modeling and Network Data Envelopment Analysis

Nowadays, the service industries play an essential role in the economic development of countries, and among the various fields of insurance, life insurance is of particular importance because it covers its cover directly to humans. Increased competition in the insurance industry has led managers to seek marketing strategies that, in addition to increasing insurance sales, reduce costs and gain ...

متن کامل

On modeling of bioreactors for control

Bioreactors are noted for their dynamic behavior deviant from that of chemical reactors because of metabolic regulation. Consequently model-based control of bioreactors must rely on models that can accommodate regulatory behavior. Although the framework of kinetics, the hallmark of analysis of all chemical reaction systems (of which metabolism is but an illustrious member), would be a natural i...

متن کامل

A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.

Flux balance analysis (FBA) in combination with the decomposition of metabolic networks into elementary modes has provided a route to modeling cellular metabolism. It is dependent, however, on the availability of external fluxes such as substrate uptake or growth rate before estimates can become available of intracellular fluxes. The framework classically does not allow modeling of metabolic re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2008